年级上册数学单元知识点第1篇一、要打好基础。数学是一门系统性强,前后内容联系十分紧密的学科。就学校老师教学的内容而言,前面的内容往往是后面学习必备的基础,前面没有学好,肯定影响后面知识的学习。假如整数下面是小编为大家整理的年级上册数学单元知识点11篇,供大家参考。
年级上册数学单元知识点 第1篇
一、要打好基础。
数学是一门系统性强,前后内容联系十分紧密的学科。就学校老师教学的内容而言,前面的内容往往是后面学习必备的基础,前面没有学好,肯定影响后面知识的学习。假如整数四则计算都不会,怎么去进行小数计算?一步解答的应用题都不会,怎么去解答两步或多步解答的综合应用题目呢?……因此,学习数学必须遵循从基础学起,循序渐进,逐步扩展的原则。如果你在以前的数学基础没有打好,那必须把以前欠缺的知识补起来,这一点非常必要。就如同建造高楼大厦,你把根基打好了,才能够在上面建造一层、二层、三层……。当然要补上所欠缺的基础知识,是很不容易的。基本的计算(如口算、笔算)、基本概念、基本的数量关系、基本的图形知识……,还有最基本的数学思想和解决数学问题的基本方法都是基础。我们首先要弄清楚欠缺在哪里?然后才能有针对的进行补救。
二、要学会倾听。
数学是一门抽象的学问,思维性和逻辑性很强,是需要同学们动脑子,下工夫去学的科目。所以上课思想不要开小车,尤其是老师在讲解、分析,同学们在回答问题的时候,你要排除一切干扰,做到全神贯注的听,随着老师的讲解去思维,去发现,去拓展。只有你听明白了老师和同学的话,你也才能够分析判断别人的话是否正确,才能够学到老师和别的同学分析问题的方法。如:分析数量关系,寻求解决问题途径时,就如警察破案,步步紧逼,环环紧扣。老师在讲解时的每一步,都是下一步分析的基础,如果你上一步没有搞清楚,就会影响下一步的分析和理解。由此说明认真听讲是多么的重要。另外,学会倾听也是一种礼貌,一种尊重,更是一种学习精神。
三、要重视解决问题的方法和过程。
学习数学知识,既要重视做题的结果,更要重视解决问题的方法和过程。重结果只会导致模仿、死记硬背、生搬硬套,若遇到陌生题型往往就会束手无策。只有注重解题过程和解题方法的同学,思维才能够得到真正的锻炼,才会变得越来越聪明。而实际上有些同学在学习中,只注重某道题目结果等于几,而不想搞清楚为什么等于几?比如一些图形方面的计算公式,我们不但要记住它,更要理解这些公式是怎样推导出来的,采用什么方法推倒出来的?这样我们才能够灵活运用,融会贯通。就算忘记了公式我们可以再推导,再总结出来。我们的分析和推理能力才能够提高。
四、要做适当的练习。
学习数学离不开做题。孔子说:“学而时习之” 、“温故而知新”。意思是:只有时常温习过去所学的知识,并整理而找出头绪,加以巩固,才能不断吸收和了解新的东西。不做适当的练习,学到的知识就没有办法巩固。比如我们学习了圆面积的计算,我们也理解了公式推导的过程,但没有及时去练习,那么学会的计算方法很快可能就忘记了。所以为了更好的掌握旧知识和获得新的知识,做适当的练习题,是很有必要的。
五、要敢于提出问题和自己的见解。
不管是课本上的知识,还是老师讲的,我们要大胆提出与众不同的看法和问题。不一定老师讲的就是最好的方法,我们应该敢于和老师挑战,敢于和教材挑战。当然,不思维和不善于思考的人是做不到这一点的。比如在学习用比的知识解决实际问题的时候,你还可以想能不能用别的知识去解答呢?然后你就会发现用学过的整数除法知识或变换为分数知识都可以去解决这种问题。从而你一定会为你的解题方法而得意吧。
六、要善于找规律,善于总结归纳,迁移类推,举一反三。
数学是一门规律性很强的科目,学习数学就必须善于寻找数学规律,善于总结。要能够触类旁通,把新旧知识有机的结合起来,系统起来,整理成框架。所谓万变不离其宗,我们掌握了数学知识的体系,我们就有解决综合题目的能力。
七、要持之以恒。
“兴趣是最好的老师”。要对数学产生并保持兴趣,最重要的是一定要坚持。只要坚持,时间长了,对数学就会产生和保持兴趣了.没有耕耘就不会有收获。学习数学的过程也许是辛苦的,但是,当我们解答出难题的时候,那种自豪与成功的感觉只有自己最能体会。如果你能够继续这样坚持,你就会对数学产生兴趣。往往许多同学就是害怕付出,半途而废,他们是体会不到学习数学所带来的愉悦。
八、要尽量做到课前预习。
有预习的效果是不同的。因为如果你有预习,就会对今天要学的知识有个大概的了解,既锻炼了自学的能力,又有助于听老师讲课时做到有的放矢,提高听课的效率。
年级上册数学单元知识点 第2篇
《认识几百几十》
一、创设情境,导入新课
出示生活中几百几十的场景,比如:一本书一共有320页,会场中一共有920个人等,告诉学生几百几十的数在我们日常生活中随处可见,作用可大了。
讲述:今天这节课我们一起来学习几百几十的数。(板书课题:认识几百几十)
二、操作探究,学习新知
1、教学例题
(1)直观认识
出示4块方板。
提问:这4块方板里有多少个小方块?400里面有几个百?(板:4个百)
(出示5根木条)这里面有多少个小方块?五十里面有几个十?(板:5个十)
现在一共是多少个小方块?你是怎么知道的?
(2)用计数器表示。让学生都在计数器上拨珠,并指名演示。
(3)写数、读数
让学生对照计数器试着写数,并与同桌说一说你是怎么写的?个位上为什么0?0可以不写吗?谁能把这个数读一读?
2、教学“试一试”
提问:你能一边拨珠子一边一十一十地数,从三百九十数到四百三十吗?
请把它们写下来。(要求学生相互给同学看)
提问:数到三百九十,接下来数什么?那么数到六百九十呢?数到八百九十呢?
不拨珠你能从890数到1000吗?(要求学生数给同桌听)
提问:数到九百九十,接下来数什么?追问:九百九十后面为什么时一千?
三、组织练习,加深认识
1、做“想想做做”第一题。
独立看图填写,指名回答,共同订正。
提问:你怎么想到13个十是130?
2、做“想想做做”第2题。
独立填写,共同订正。
提问:360和630各是怎么组成的?
3、做“想想做做”第3、4题。
指名读数,共同写数。要求学生写在自己的本子上。
订正后提问:做过这两道题后你有什么想法?教育学生保护植物和野生动物。
4、做“想想做做”第5、6题。
让学生独自填写得数或算式。
做完第5题后提问:你能说说你是怎么想的吗?(口算时可以利用几百几十的组成来思考,也可以利用加减法的关系来思考。)
5、做“想想做做”第7、8题。
口算给同桌听。(每人一组)
6、做“想想做做”第9题。
独立列式计算。订正时追问:这道题为什么用加法计算?小结:已经栽的棵数与还剩下的棵数相加,就是一共栽的棵数。
四、课堂总结
提问:今天这节课你学习了什么?有什么收获?
年级上册数学单元知识点 第3篇
一、确定物体位置的条件
在平面上确定物体的位置,首先要确定观测点,然后要找准方向和角度(方位角),最后要确定距离。
二、在平面图上标出物体位置的方法:
1、观测点和方位角;
2、从观测点沿着所确定的方向画一条射线;
3、根据单位长度的线段所表示的地面相对距离把实际距离换算为图上长度;
4、用直尺画出图上长度,并标出被观测点的位置及名称。
确定物体位置的条件:方向和距离,两个条件缺一不可。
三、位置关系的相对性。
描述两个物体或地点位置关系的时候会有两种方式,如“上海在北京的南偏东约30°的方向上”“北京在上海的北偏西约30°的方向上”。角度不变,方向正好相反。南偏东对应北偏西(不能说成西偏北)
因为东西、南北正好相对,所以东偏南的相对位置是西偏北。
四、描述路线图的方法
先按行走路线确定观测点,再确定行走的方向和路程.即每走一步,都要说清从哪里出发,向什么方向走多远的距离。每走一步,都换一个新的观测点。
五、绘制路线图的方法
1、确定方向标和单位长度
2、确定起点的位置
3、根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为观测点)外,其余每段都要以前一段的终点为观测点。
4、以谁为观测点,就以谁为中心画出"十"字方向标,然后判断下一点的方向和距离。
每画一段路都要重新确定观测点、方向和距离。
年级上册数学单元知识点 第4篇
认识倒数
(1)倒数的意义:乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。
(2)求一个数的倒数
①求分数的倒数:交换分子和分母的位置即可。
②求整数的倒数(0除外):先把整数看作分母是1的假分数,然后交换分子、分母的位置即可。
③求小数的倒数:先把小数化成分数,再交换分子、分母的位置。
分数的除法
(1)分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)分数除法的计算:一个数除以一个不为0的数,等于乘这个不为0的数的倒数。
(3)分数的四则混合运算:与整数的四则混合运算的运算顺序相同。
① 先乘除,后加减;
② 如果有括号,要先算括号里面的。
(4)解决问题,这里主要包含三种类型的题。
① 已知一个数的几分之几是多少,求这个数。
方法一:设单位“1”的量为x,然后列方程解答。
方法二:已知量÷已知量占单位“1”的几分之几=单位“1”的量。
② 已知比一个数多(或少)几分之几的数是多少,求这个数。
方法一:设单位“1”的量为x,然后列方程解答,所依据的数量关系是,单位“1”的量×(1 ± 几分之几)=已知量。
方法二:先确定单位“1”的量,计算出已知量占单位“1”的几分之几,再根据分数除法的意义列式解答。
③ 已知两个数的和或差以及这两个数之间的倍数关系,求这两个数。
先找出单位“1”的量并设为x,用含有x的式子表示出另一个量,再根据两个数的和或差列方程解答。
(5)工程问题
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
年级上册数学单元知识点 第5篇
1、圆的认识
(1)圆的各部分名称:①圆心——圆中心的一点叫做圆心,一般用字母O表示。②半径——连接圆心与圆上任意一点的线段叫做半径,一般用字母r表示。③直径——通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。④一个圆只有一个圆心,有无数条半径和无数条直径。(2)圆的特征:注:(1)圆心决定圆的位置,半径(或直径)决定圆的大小。
(2)直径是圆内最长的线段。
(3)直径所在的直线就是圆的对称轴。(3)用圆规画圆:①把圆规的两脚分开,定好两脚之间的距离作为半径。②把带有针尖的脚固定在一点上作为圆心。③把装有铅笔芯的脚旋转一周,即可画出一个圆。(4)用圆可以设计出很多漂亮的图案。例:小朋友可以练习一下,用圆规画出一个半径为3厘米的圆。
2、圆的周长
(1)圆的周长的定义:围成圆的曲线的长度叫做圆的周长,一般用字母C表示。
(2)圆周率:圆的周长与它的直径的比值为一定值,这个定值就是圆周率,用字母π表示,一般在计算时π取。
(3)圆的周长计算公式:C=2πr或C=πd(4)半圆的周长:半圆的周长为圆周长的一半加上2条半径或1条直径的长度。例:求下面这个半圆的周长。
3、圆的面积
(1)圆的面积的定义:圆所占平面的大小叫做圆的面积,一般用字母S表示。
(4)两个典型问题:①在正方形内画一个最大的圆——正方形的边长即为这个最大的圆的直径。②在圆内画一个最大的正方形——这个正方形的对角线的长度即为圆的直径。
年级上册数学单元知识点 第6篇
技巧学会主动预习
新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
技巧在老师的引导下掌握思考问题的方法
一些学生对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。如有这样一道题让学生解"把一个长方体的高去掉2_厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?"同学们对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积,经老师启发,学生分析后,学生根据其思路(可画出图形)进行解答。有的学生很快解答出来:设原长方体的底面长为X,则2X×4=48得:X=6(即正方体的棱长),这样得出正方体的体积为:6×6×6=216(立方厘米)。
技巧及时总结解题规律
解答数学问题总的讲是有规律可循的。在解题时,要注意总结解题规律,在解决每一道练习题后,要注意回顾以下问题:
(1)本题最重要的特点是什么?(2)解本题用了哪些基本知识与基本图形?(3)本题你是怎样观察、联想、变换来实现转化的?(4)解本题用了哪些数学思想、方法?(5)解本题最关键的一步在那里?(6)你做过与本题类似的题目吗?在解法、思路上有什么异同?(7)本题你能发现几种解法?其中哪一种最优?那种解法是特殊技巧?你能总结在什么情况下采用吗?把这一连串的问题贯穿于解题各环节中,逐步完善,持之以恒,学生解题的心理稳定性和应变能力就可以不断提高,思维能力就会得到锻炼和发展。
技巧拓宽解题思路
在教学中老师会经常给学生设置疑点,提出问题,启发学生多思多想,这时学生要积极思考,拓宽思路,以使思维的广阔性得到较好的发展。这样启发学生多思,沟通了知识间的纵横关系,变换解题方法,培养学生思维的灵活性。
技巧善于质疑问难
学启于思,思源于疑。学生的积极思维往往是从有疑开始的,学会发现和提出问题是学会创新的关键。学习中要善于发现问题,敢于提出问题,即增加主体意识,敢于发表自己的看法、见解,激发创造欲望,始终保持高昂的学习情绪。
要让孩子学好数学,请您记住这四句顺口溜:调动兴趣是关键;数学基础要打牢;思维训练要做好;习惯、坚持很重要。
年级上册数学单元知识点 第7篇
分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。
①如果是同一级运算,按照从左到右的顺序依次计算。
②如果是分数连乘,可先进行约分,再进行计算。
③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。
2、解决问题
(1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:
第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。
第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。
(2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”
第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。
第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。
(3)用方程解决稍复杂的分数应用题的步骤:
①要找准单位“1”。
②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。
③设未知量为X,根据等量关系式,列出方程。
④解答方程。
(4)要记住以下几种算术解法解应用题:
①对应数量÷对应分率=单位“1” 的量
②求一个数的几分之几是多少,用乘法计算。
③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。
3、要记住以下的解方程定律:
加数+加数=和
加数=和-另一个加数
被减数-减数=差
被减数=差+减数
减数=被减数-差
因数×因数=积
因数=积÷另一个因数
被除数÷除数=商
被除数=商×除数
除数=被除数÷商
4、绘制简单线段图的方法
分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。
绘制步骤:
①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。
②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。
③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。
④问题所求要标出“?”号和单位。
5、补充知识点
分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
分数乘法的计算法则
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
分数乘整数:数形结合、转化化归
倒数:乘积是1的两个数叫做互为倒数。
分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12 ,12是1/12的倒数。
小数的倒数
普通算法:找一个小数的倒数,例如 ,把化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1 用1计算法:也可以用1去除以这个数,例如 ,等于4 ,所以的倒数4 ,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
分数除法:分数除法是分数乘法的逆运算。
分数除法计算法则:
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
年级上册数学单元知识点 第8篇
预 习
在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。
专心听讲
(1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。
若老师讲到你早先预习时不了解的那部份,你就要特别注意。
有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。
(2)上课时一面听讲就要一面把重点背下来。定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。
待回家后只需花很短的时间,便能将今日所教的课程复习完毕。事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什麼都不记得,白白浪费一节课,真可惜。
课后练习
(1) 整理重点
有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学著重推理,不必死背,所以什麼都不背,这观念并不正确。一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的医学知识、用药知识熟记心中,如何在第一时间救人。很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式”完整地背熟。
(2) 适当练习
重点整理完后,要适当练习。先将老师上课时讲解过的例题做一次,然后做课本习题,行有余力,再做参考书或任课老师所发的补充试题。遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。
(3) 练习时一定要亲自动手演算。很多同学常会在考试时解题解到一半,就接不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。
测验
(1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。
(2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。
(3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要 硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。
(4) 考试时,容易紧张的同学,有两个可能的原因:
准备不够充分,以致缺乏信心。这种人要加强试前的准备。
对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。这种人必须调整心态。不要预期太高。
纠错、补强
测验后,不论分数高低,要将做错的题目再订正一次,务必找出错误处,修正观念,如此才能将该单元学的更好。
回想
一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最重要的。将主题重点回想一遍,才能完整了解我们在学些什麼东西。
年级上册数学单元知识点 第9篇
一、垂直与平行
1、认识平行和垂直
①同一平面内的两条直线的位置关系只有两种:相交和不相交。相交又有成直角的和不成直角的两种情况。
_“同一平面”是确定两条直线平行关系的前提,如果不在同一平面内,即便不相交,也不能称为互相平行。
②平行线:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
平行的表示方法:a//b,读作a平行于b。
生活中平行的例子:窗户相对的框,黑板相对的两条边,公路上的斑马线
③垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
垂直的表示方法:ab
生活中垂直的例子:三角尺上的两条直角边互相垂直
④三条直线的特殊关系:
a//b,b//c,那么a//c:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行
ab,bc,那么a//c:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。
2、垂线的画法和性质
①过直线上和直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的顶点和直线上的已知点重合;从直角的顶点起,沿着另一条直角边画出一条直线,这条直线就是已知直线的垂线。
②过直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的另一条直角边与直线外的一点重合;沿着三角尺的另一条直角边画一条直线
③垂线的性质:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
年级上册数学单元知识点 第10篇
角的平分线1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;
2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;
3、角平分线的判定定理:角的内部到角的两边的距离相等的点在角平分线上
4、方法规律
(1)有角平分线,通常向角两边引垂线。
(2)证明点在角的平分线上,关键是要证明这个点到角两边的距离相等,即证明线段相等。常用方法有:使用全等三角形,角平分线的性质和利用面积相等,但特别要注意点到角两边的距离。
(3)注意:证题时可直接应用角平分线性质定理和判定定理,不必去找全等三角形。
年级上册数学单元知识点 第11篇
1、课后分析看例题??
课堂上例题弄懂了,并不说明你具备了解题能力和知识迁移能力。课后还需要从一个新的角度重新审视、分析例题。由于新的知识的掌握、知识面的扩展以及老师的引导、点拨,再看例题时则对难点有了不同的认识,进入了更高的层次。对题中基础知识的运用,分析、推理方法的选择都会有更深的理解。如果课后不看例题思维就会停留在一个浅层次,无法完成由浅入深,由表及里的转化过程。?? ?
2、作业推理识例题??
做练习是运用知识解决问题提高能力的最重要最有效的方法,也是学好数学的关键。做作业时首先要识别例题,即这道题属于本章节所讲例题的哪一类型;其次要回忆上课老师是如何解题的,再分析有几种解题方法,最后明确哪一种方法最简便。如果识记不清或对以前学过的例题产生了遗忘,要不惜时间去翻阅、分析、记忆。
推荐访问: 知识点 上册 单元 年级上册数学单元知识点11篇 年级上册数学单元知识点(实用11篇) 年级上册数学知识点思维导图