初中数学课件初中数学课件1 一、教学目标 1.了解分式、有理式的概念. 2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点 1下面是小编为大家整理的初中数学课件(完整文档),供大家参考。
初中数学课件
初中数学课件1
一、教学目标
1. 了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.
二、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件.
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
3.认知难点与突破方法
难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.
三、例、习题的意图分析
本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.
1.本节进一步提出P4[思考]让学生自己依次填出: 为下面的[观察]提供具体的式子,就以上的式子 ,有什么共同点?它们与分数有什么相同点和不同点?
可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.
P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.
希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .
2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 才有意义.
3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.
4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.
四、课堂引入
1.让学生填写P4[思考],学生自己依次填出:
2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为x千米/时.
轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .
3. 以上的式子有什么共同点?它们与分数有什么相同点和不同点?
五、例题讲解
P5例1. 当x为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母x的取值范围.
[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当m为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.
[答案] (1)m=0 (2)m=2 (3)m=1
六、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
2. 当x取何值时,下列分式有意义?
七、课后练习
1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与y的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
初中数学课件2
教学目标:
1.理解和掌握多项式除以单项式的运算法则。
2.运用多项式除以单项式的法则,熟练、准确地进行计算.
3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.
4.培养学生耐心细致、严谨的数学思维品质.
重点、难点:
1.多项式除以单项式的法则及其应用.
2.理解法则导出的根据。
教学过程:
1.复习导入
(l)用式子表示乘法分配律.
(2)单项式除以单项式法则是什么?
(3)计算:
①
②
③
(4)填空:
规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2.讲授新课
例1 计算:
(1)
(2)
解:(1)原式
(2)原式
注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.
(2)要求学生说出式子每步变形的依据.
(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.
例2 化简:
解:原式
说明:注意弄清题中运算顺序,正确运用有关法则、公式。
练习:(1)P150 1,2,。
(2)错例辩析:
有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为
。
3.小结
1.多项式除以单项式的法则是什么?
2.运用该法则应注意什么?
正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。
4.作业
P152 A组1,2。
初中数学课件3
一、内容特点
在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)*方根的概念;会用根号表示数的(算术)*方根,会求*方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路
整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入*方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:*方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术*方根、*方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求*方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
初中数学课件4
一、素质教育目标
(一)知识教学点
会列二元一次方程组解简单的应用题,并能检查结果是否正确、合理.
(二)能力训练点
培养学生分析问题、解决问题的能力.
(三)德育渗透点
1.体会代数方法的优越性.
2.向学生进一步渗透把未知转化为已知的思想.
3.向学生进行理论联系实际的教育.
(四)美育渗透点
学习列方程组解应用题时,若能在错综复杂的关系中抓住问题的关键,就能迅速通过相等求解,从而渗透解题的简捷性的数学美,以及解题的奇异美.
二、学法引导
1.教学方法:尝试指导法、观察法、讲练结合法.
2.学生学法:本节主要学习列二元一次方程组和三元一次方程组解应用题的方法,尤其重点要掌握列出二元一次方程组解应用题,其分析方法和解题步骤都与前面学过的列一元一次方程解应用题类似,可在学习中进行类比从而加强理解.
三、重点·难点·疑点及解决办法
(一)重点与难点
根据简单应用题的题意列出二元一次方程组.
(二)疑点
正确找出表示应用题全部含义的两个相等关系,并把它们表示成两个方程.
(三)解决办法
通过反复读题、审题,分析出题目中存在的两个相等关系是列方程组的关键.
四、教学具学具准备
投影仪、自制胶片.
五、师生互动活动设计
1.通过提问,复习列一元一次方程解应用题的步骤,尤其相等关系的寻找问题.
2.师生共同探索新知识—列二元一次方程组解应用题的一般步骤.
3.通过反馈练习,检查学生掌握知识的情况,以便有针对性地进行差漏补缺.
六、教学步骤
(一)明确目标
本节课主要学习列二元一次方程组解应用题.
(二)整体感知
列二元一次方程组解应用题的关键在于通过准确的审题迅速寻找出两个正确的相等关系来列二元一次方程组.
(三)教学过程
1.创设情境、导入新课
(1)根据下列条件设适当的未知数,列出二元一次方程.
①甲、乙两数的和是10.
②甲地的人数比乙地的人数的2倍还多70.
③买4支铅笔、3支圆珠笔共花了1.6元.
(2)甲、乙两工人师傅制作某种工件,每天共制作12件.已知甲每天比乙多制作2件,求甲、乙每人每天可制作几件?
①列出一元一次方程和二元一次方程组解题.
②比较一下,两种方法得到的结果是否相同?是列一元一次方程容易,还是列二元一次方程组容易?
学生活动:第(1)题口答,第(2)题在练习本上完成.
【教法说明】第(1)题为根据相等关系列二元一次方程打下了基础;第(2)题通过两种解法的比较,让学生体会列方程组的优越性,这样引入课题,可以引起学生学习新知识的兴趣.
2.探索新知,讲授新课
例1 小华买了80分与2元的邮票共16枚,共花了18元8角,80分与2元的邮票各买了多少枚?
分析:(1)题中有几个未知数?分别是什么?
(2)题中有几个相等关系?分别是什么?
学生活动:观察、分析后回答.
未知数:80分邮票枚数与2元的邮票枚数.
相等关系(1)80分邮票枚数+2元邮票枚数=总枚数.
(2)80分邮票总价+2元邮票总价=全部邮票总价.
强调:(1)选定几个未知数,根据问题中的条件找几个相等关系,这几个相等关系正好表示了应用题的全部含义.
(2)列方程组解应用题时,解方程组过程在练习本上完成.
(3)得到结果后,要检验是不是原方程组的解,是不是符合应用题的实际意义,然后再写答句.
反馈练习:P35 1,2.(只列不解)
例2 小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分;做5个小狗、6个小汽车用去3小时37分.*均每1个小狗与1个汽车各用多少时间?
仿照刚才分析例1的方法,分析问题.
学生活动:拟题、自由提问,其他学生抢答.
初中数学课件5
一、 教材分析
(一)教材地位
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.
情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.
(三)教学重点:
经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.
二、教法与学法分析:
学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.
三、 教学过程设计
1创设情境,提出问题
2.实验操作,模型构建
3.回归生活,应用新知
4.知识拓展,巩固深化
5.感悟收获,布置作业
(一)创设情境提出问题
(1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.
(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?
设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.
二、实验操作模型构建
1.等腰直角三角形(数格子)
2.一般直角三角形(割补)
问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?
设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.
问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)
设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.
通过以上实验归纳总结勾股定理.
设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律.
三.回归生活应用新知
让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.
四、知识拓展巩固深化
基础题,情境题,探索题.
设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.
基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?
设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维.
情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?
设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。
设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.
五、感悟收获布置作业:这节课你的收获是什么?
作业:
1、课本习题2.1
2、搜集有关勾股定理证明的资料.
板书设计
探索勾股定理
如果直角三角形两直角边分别为a,b,斜边为c,那么
设计说明:
1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.
2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水*、表达水*.
初中数学说课稿课件:《认识*行四边形》
【说教材】
一、说课内容:苏教版数学四年级下册第43~45页。
二、教学内容的地位、作用和意义:
这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识*行和相交的基础上,进一步认识*行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步学习*行四边行面积计算打下基础。教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的*行四边形,再要求学生根据个人的生活经验举例,充分感知*行四边形;接着让学生做出一个*行四边形并相互交流,初步感受*行四边形的基本特征。在此基础上,抽象出*行四边形的图形让学生认识,引导学生探索发现*行四边形的基本特征。第二个例题认识*行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个*行四边形指定底边上的高及相应的底,进一步感受高与底的意义。
三、说目标
1、知识与技能目标
(1)理解*行四边形的概念及其特征。
(2)认识*行四边形的底和高,会画高。
(3)培养学生实践能力,观察能力、分析能力。
2、过程与方法目标
让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个*行四边形,会在方格纸上画*行四边形,能正确判断一个*面图形是不是*行四边形,能测量或画出*行四边形的高。
3、情感态度与价值观目标
让学生感受图形与生活的密切联系,感受*面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。
四、教学重点、难点:
教学重点:是认识*行四边形;利用材料做*行四边形并发现其特征;能测量或画出*行四边形的高。
教学难点:是学生在做*行四边形的过程中体会其特征。
五、说教具和学具准备
教具:三角板、*行四边形纸片、长方形活动框、小黑板等。
学具:三角板、*行四边形纸片、量角器。
【说学情】
四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。
【说教法和学法】
这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点
一、联系生活实际进行教学
“数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找*行四边形,再寻找生活中的*行四边形。最后举例说明*行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。
二、让学生在活动中探究
心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做*行四边形、相互交流,从中感受*行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同*面图形之间的联系。
三、独立思考与合作交流
本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去独立思考,这样在合作交流时才有话可说,思维才能碰撞。
【说教学程序】
一、创设情境导入新课
1、介绍七巧板
师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?
一千多年前,*人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“*魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。
2、导入:今天就让我们一起来认识其中的一个图形—*行四边形。(出示课题)
【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】
二、尝试探索建立模型
(一)认一认形成表象
师:老师这儿的图形就是*行四边形。改变方向后问:它还是*行四边形吗?
不管*行四边形的方向怎样变化,它都是一个*行四边形。(图贴在黑板上)
(二)找一找感知特征
1、在例题图中找*行四边形
师:老师这有几幅图,你能在这上面找到*行四边形吗?
2、寻找生活中的*行四边形
师:其实在我们周围也有*行四边形,你在哪些地方见过*行四边形?(可相机出示:活动衣架)
(三)做一做探究特征
1、刚才我们在生活中找到了一些*行四边形,现在你能利用手边的材料做出一个*行四边形吗?
2、在小组里交流你是怎么做的并选代表在班级里汇报。
3、刚才同学们成功的做出了一个*行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)
4、全班交流,师小结*行四边形的特征。(两组对边分别*行并且相等;对角相等;内角和是360度。)
【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认*行四边形、找*行四边形和做*行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了*行四边形的特征。】
(四)练一练巩固表象
完成想想做做第1、2题
(五)画一画认识高、底
1、出示例题,你能量出*行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?
2、师:刚才你们画的这条垂直线段就是*行四边形的高。这条对边就是*行四边形的底。
3、*行四边形的高和底书上是怎么说的呢?(学生看书)
4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)
5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)
6、画高(想想做做第5题)(提醒学生画上直角标记)
三、动手操作巩固深化
1、完成想想做做第3、4题
第3题:拼一拼、移一移,说说怎样移的?
第4题引入:木匠张师傅想把一块*行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张*行四边形的纸试一试。
2、完成想想做做第6题(课前做好,课上活动。)
(1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。
(2)判断:长方形是*行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的*行四边形?(特殊)特殊在哪了?
(3)得出*行四边形的特性
师再捏住*行四边形的对角向里推。看你发现了什么?
师:三角形具有稳定性,通过刚才的动手操作,你觉得*行四边形有什么特性呢?(不稳定性、容易变形)
(4)特性的应用
师:*行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)
【设计意图:】
四、畅谈收获拓展延伸
1、师:今天这节课你有什么收获吗?
2、用你手中的七巧板拼我们学过的图形。
3、寻找*行四边形容易变形的特性在生活中的应用。
【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找*行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】
初中数学课件6
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
初中数学课件7
教学目标
1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2. 会初步应用正负数表示具有相反意义的量;
3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4.培养学生逐步树立分类讨论的思想;
5. 通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海*面高8848米,记作8848米,比海*面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
三、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
四、有理数的分类
整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
初中数学课件8
3、小试牛刀
① (x+y)2=______________;② (-y-x)2=_______________;
③ (2x+3)2=_____________;④ (3a-2)2=_______________;
⑤ (2x+3y)2=____________;⑥ (4x-5y)2=______________;
⑦ (0.5m+n)2=___________;⑧ (a-0.6b)2=_____________.
〈四〉、[学生小结]
你认为完全*方公式在应用过程中,需要注意那些问题?
(1) 公式右边共有3项。
(2) 两个*方项符号永远为正。
(3)中间项的符号由等号左边的两项符号是否相同决定。
(4)中间项是等号左边两项乘积的2倍。
〈五〉、冒险岛:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、学生自我评价
[小结] 通过本节课的学习,你有什么收获和感悟?
本节课,我们自己通过计算、分析结果,总结出了完全*方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。
〈七〉[作业] P34 随堂练习 P36 习题
七、课后反思
本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全*方公式两种形式的应用。为完全*方公式第二节课的实际应用和提高应用做好充分的准备。
初中数学课件9
一、几何画板应用于初中数学教学的优势
几何画板的应用最早由美国兴起,我国在意识到其对数学教学方面的作用后,即将其引入到初中教学中,其独有的优势使得传统初中数学教学中的弊端得以优化,具体可以归纳为以下几个方面:1.将抽象具体化,其形象生动的表现形式,可以将抽象的数学公式展现在学生眼前,如此一来学生即可以提升课堂学习效率,该优势在几何知识方面的作用尤为显著,使得难教难懂的几何知识变得易于理解;2.极具动态感觉,该教学环境的灵活性十足,其可以根据点、线、面不同的特征组成形式各样的几何图形,将数学规律进行动态演示,同时学生也可以根据自身需求拖动、改变几何图形,此种学习方式更加利于开展自主学习,另外,动手操作相较于教师讲解更能促进学生思维能力的提升。
二、几何画板优化初中数学教学的案例分析
(一)函数及图像
函数是初中数学中较为重要的知识,并且对于从未接触过函数的学生而言,若单单依靠教师讲解,很难使学生理解其实际含义,而使用几何画板则不会存在此问题。如在区分y=x+4与y=-x+4时,教师即可以引导学生利用几何画板来帮助自身理解,其所显示的图形中可以看出,y=x+4中,x的值越大,y值越大,可见其为单调递增函数;而y=-x+4中,x的值越大,y值越小,因此此种函数为单调递减函数。学生可以轻易的发现函数单调性的特性,并迅速找到区别其递增、递减的.最佳标志,即观察系数,当x前的系数为负,其为单调递减,为正时则为单调递增,另外,当y=-x+4与y=x+4相交时,会出现垂直现象,以上种种知识在几何画板中的显示十分明显,便于学生理解。
(二)勾股定理
勾股定理知识虽然不似函数般难懂,但学生自身理解能力不同,对于数学知识的兴趣程度也有所差异,因此教师很难使学生保持在同一水*,但使用几何画板可以避免或减少此种情况发生,学生在自行操作几何画板的过程中,能够感受到知识的变化,也能感受到自身对知识的理解能力有了很大提升,因此可以增加学生的信心。如在n堂中,教师可以引导学生绘图验证勾股定理,首先绘制三角形,其次将两个直边标为a,b,斜边标为c,然后分别以三个边为基点绘制正方形,Oa,Ob,Oc,最后通过计算即能够发现勾股定理的含义,即Oa面积+Ob面积=Oc的面积。
(三)数学公式
数学公式在数学学科中极为重要,甚至可以说其是学好初中数学的前提,然而由于数学公式往往需要学生死记硬背,很多学生觉得十分枯燥,并且人的记忆时间有限,此种记忆难以维持很长时间,当学习更多知识时会慢慢将其淡忘,对于今后数学公式的运用,已经今后的数学学习而言极为不利。而几何画板的优势使得教师可以将公式内容形象的演示出来,学生可以直观发现公式的规律,同时掌握更多科学依据,此种由理解促进记忆的方式更有意义。如在学习概率知识时,其中包含了许多形式的公式,如排列公式、组合公式或是加法、乘法概率等,此种知识若学生只专注于记忆,却忽略了理解,则很难在实际应用中迅速解答相关习题,几何画板内容的多样性在此方面的作用可以有更好的体现。
三、结语
综上所述,研究关于几何画板优化初中数学教学的案例分析方面的内容,具有十分重要的意义,其不仅关系到我国初中学子的数学成绩,也与我国教育事业发展息息相关。不难发现,使用几何画板可以丰富课堂教学方式,也能充分引起学生学习数学的兴趣,便于学生理解更深一层的数学知识,此种新型教学环境所产生的作用是前所未有的,但不可否认的是,其在实际应用中依然会暴露出些许问题,因此相关机构和人员应加强对此方面的研究,使其能够更加完善。
初中数学课件10
环节一:创设情境,引入新知
师: 同学们,老师这里有几道题都是小学一年级的问题,有信心做吧?
生: 没问题(跃跃欲试)。
师: 很好,不过由于题简单要求看到题目大家齐答,能做到吧。
生:能(看投影片)。
师:出示(课件)
生: 回答问题1和问题2 到问题3都不知道咋答了。
师:看来大家都不知道咋答了,是因为我们都知道不是同类的不能加在一起
请大家再看下边问题,按要求列出式子(课件)。
生:(观察课件上边的实际问题)列式。
环节二:设问质疑,尝试探究
师:板书(学生的答案)同时写出几个具有同样特点的式子,此时生都可以把这些利用乘法的分配律合并成一项,大家观察这些式子都具备什么特征?
生:讨论,各抒己见,所含字母相同,相同字母的指数相同(两分钟左右学生之间回答补充)。
师:很好,咱们把具有这些特点的单项式叫做同类项。(课件)
生:书写同类项的定义。
师:板书同类项的定义及课题(同类项),同时出示课件(试试你的判断能力)。
生:回答,并用定义解释。
师:很好,请大家看下边的问题(半开放问题)。
生:A、B、C回答,其他生评价补充。
师:现在老师把权力都交给你们好不好?(全开放)每个人任意写出一个单项式,然后都举起来找一找有没有和你是同类项的好朋友。
生:认真的书写,然后高高举起查找着谁是“朋友”
找到的自然很开心,没找到的有些失落---
师:没关系的,该同学没有找到和他是同类项的,谁愿意和他做朋友啊?请写出和他是同类项 的。
生:都在写,然后举起来,该同学一看高兴了,写的都是他的“朋友”
师:非常好,大家再观察一下这些同类项有哪些不同?
生:(你言我语,突然发现就是系数不同),然后异口同声说只有系数不同
师:展示课件,同类项的两个相同和两个无关。
生:观察体会。
师:接下来请大家在多项式中找同类项,看谁找的又快又准。
生:很快找到了(有些学生试着合并)。
师:巡视,看到一些学生自发的将同类项合并了,很好,老师看到好多同学不但能准确的找到同类项而且还把式子化简了现在我们一起来做做试试(生和老师共同做)。
师:板演示范例题,做到一半时让生来完成。我们把多项式中的同类项合并成一项就叫合并同类项(板书课题)补全《合并同类项》请大家观察怎样合并的同类项?
生:各抒己见,有的说是利用乘法分配律---有的说是系数相加,字母部分没变。
师:给予肯定,大家说的都对总结的很好,老师把大家的意见综合到一起就是合并同类项的方法(课件)师板书
生:书写合并同类项的法则并体会是怎样合并的。
环节三:新知应用,形成体验
师:方法都会了,现在我们就要进行实战,看谁用的最熟练、最准确、步骤书写最规范。
多媒体展示:(合并同类项两道题)
生:认真做题,两名同学到黑板前板演。
师:巡视指导,辅导(看同学们完成情况)。
生:做完后互相检查。
师:给到黑板前做题的同学进行评价给予鼓励。刚才是你们自己做的,现在有几道题是老师做的不知道有没有做错请大家帮老师看看。
生:很兴奋,急于想看看老师是不是也做错了,都想做一回老师(跃跃欲试)。
师:出示(课件)判断题。
生:很快找到了错误的地方积极的举手发言,并说为什么错了。
师:大家做的非常好找的很准,表达的也很到位,希望你们今后不要发生类似的错误!
师:下面这个问题你能明白是什么意思吗?能填上它们的数值吗?出示(课件)
生:很快找到了答案,回答的有条有理
师:非常好,看来大家对这些知识已经牢牢掌握了,我就再难为一下你们,有勇气挑战吗?
生:有(拿出练习本)做好了准备。
师:出示多媒体课件上的另外几道题(3)(4)(5)三种变式练习。
生:努力思考,认真作答。
师:巡视辅导,启发,点拨。
师:给学生的解题进行评价肯定和指导(尽量让生去说理由)。
环节四:归纳反思,课堂小结
师:请大家谈谈这节课你的收获和困惑是什么?
生1:我感觉找同类项没问题,我会了,抓住同类项的特点:所含字母相同和相同字母的指数也相同,同类项与系数和字母顺序没关系。
师:很好,还有哪位同学想谈谈。
生2:合并同类项的时候要注意系数的符号,我做题的时候常常就在符号上出错了,今后我一定要注意,希望同学们也要注意。
师:你提的意见很好,希望我们今后做题的时候多多注意。
生3:老师我也说说我的收获,通过这节课的学习我知道了什么是同类项,知道了不是同类项的不能够相加合并,还知道了常数项也都是同类项,学习了合并同类项的方法,我会合并同类项了,回家后我再练练就一定能很好的掌握这部分知识了。
师:很好,你谈的很具体。
生4:我的收获也很多,我知道了合并同类项可以把项数比较多的多项式化简,比如教材上的多项式经过合并同类项后由原来的九项变为了两项。对于化简求值题,先合并同类项将多项式化简,然后再代入数值可以使运算简便。
师:很好,你说出了合并同类项的本质,看来大家这节课学的都很认真收获也都很多,你们是最棒的,谈出了自己的收获和提醒同学们注意的地方,有收获有困惑能把它们概括出来很难得,既然有这么多收获就该趁热打铁,请大家做导学小卷上的第7题看谁做的最好。
生:认真做题,认真检查。
师:请同桌之间互换互相检查。
生:互批,互讲。
师:老师准备了一份针对本节课知识的小卷课后去做。
今天你们的表现非常出色,老师很欣赏你们,祝大家天天有进步节节有收获!
初中数学课件11
教学目标:
1、理解有理数的概念,懂得有理数的两种分类,及对一个有理数进行分类判别;
2、在数的分类中,应加强对负数的理解及对零在数分类中的特殊意义的理解。
重点:在引进负数后,能对已有的各种数进行概括,理解有理数的意义,及有理数的两种不同分类的重要意义。
难点:在对有理数的认识上,应加强对负数及零的重视,明确两者在有理数集的地位与作用。
教学过程:
一、知识导向:
通过上节课对“负数“概念的引入,通过对数范围的补充及扩大,进一步引入了有理数的概念,并对扩大后的数的范围进行重新分类。
二、新课拆析:
1、引例:(1)请学生说出负数的特征,并指出实例说明。
(2)以第(1)题中,学生所回答的数进一步分析,不同数的不同特点。
2、通过对“负数”的引入,从我们所接触的数可发现有这样几类:
正整数:如1,2,34,…
零:0
负整数:如-1,-3,-5,…
正分数:如 …
负分数:如 -0.3,…
由此我们有:
概括:正整数、零和负整数统称为整数;
正分数、负分数统称为分数;
整数和分数统称为有理数。
然后根据我们的概括,我们可以对有理数进行如下的分类
分类一: 分类二:
正整数 正整数
整数 零 正有理数 正分数
有理数 负整数 有理数 零
分数 正分数 负有理数 负整数
负分数 负分数
3、有关集合的简单知识:
概括:把一些数放在一起,就组成一个数的集合,简称为数集;
所有的有理数组成的数集叫做有理数集;
所有的整数组成的数集叫做整数集;……
例:把下列各数填入表示它所在的数值的圈里:
-18,3.1416,0,20xx,-0.142857,95%
正整数 负整数
整数集 有理数集
三、巩固训练: P20 ,练习:1,2,3
四、知识小结:
从有理数的分类入手,就着重于各类数的特点,特别是正,负及零的处理。
五、作业:
P20-21 习题2.1:2,3,4
初中数学课件12
一、教学目的
【知识与技能】
了解数轴的概念,能用数轴上的点准确地表示有理数。
【过程与方法】
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
【情感、态度与价值观】
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
【教学重点】
数轴的三要素,用数轴上的点表示有理数。
【教学难点】
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点A,B,C,D,E表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
初中数学课件13
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:
引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:
大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个*角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
初中数学课件14
一、素质教育目标
(-)知识教学点
1.了解二元一次方程、二元一次方程组和它的解的概念.
2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.
3.会检验一对数值是不是某个二元一次方程组的解.
(二)能力训练点
培养学生分析问题、解决问题的能力和计算能力.
(三)德育渗透点
培养学生严格认真的学习态度.
(四)美育渗透点
通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.
二、学法引导
1.教学方法:讨论法、练习法、尝试指导法.
2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.
三、重点·难点·疑点及解决办法
(-)重点
使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.
(二)难点
了解二元一次方程组的解的含义.
(三)疑点及解决办法
检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.
四、教具学具准备
电脑或投影仪、自制胶片.
五、师生互动活动设计
1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.
2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.
3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.
六、教学步骤
(-)明确目标
本节课的教学目标为理解二元一次方程及二元一次方程组的概念并会判断一对未知数的值是否为二元一次方程组的解.
(二)整体感知
由复习方程及其解,导入二元一次方程及二元一次方程组的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验二元一次方程组解的问题.
(三)教学过程
什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?
回答老师提出的问题并自由举例.
【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.
(四)总结、扩展
1.让学生自由发言,了解学生这节课有什么收获.
2.教师明确提出要求:弄懂二元一次方程、二元一次方程组和它的解的含义,会检验一对数值是不是某个二元一次方程组的解.
3.中考热点:中考中有时会出现检验某个坐标点是否在一次函数解析式上的问题.
七、布置作业
(一)必做题:P7 3.
(二)选做题:P8 B组2.
(三)预习:课本第9~13页.
初中数学课件15
教学目标:
1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.
3、会求函数值,并体会自变量与函数值间的对应关系.
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.
5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.
教学重点:了解函数的意义,会求自变量的取值范围及求函数值.
教学难点:函数概念的抽象性.
教学过程:
(一)引入新课:
上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.
解:1、y=30n
y是函数,n是自变量
2、n是函数,a是自变量.
(二)讲授新课
刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.
例1、求下列函数中自变量x的取值范围.
(1)(2)
(3)(4)
(5)(6)
分析:在(1)、(2)中,x取任意实数,与都有意义.
(3)小题的是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.
同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.
第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零.的被开方数是.
同理,第(6)小题也是二次根式,是被开方数,
小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.
推荐访问: 数学课件 初中 初中数学课件 初中数学课件1 初中数学课件123 初中数学课件免费下载 初中数学课件ppt免费下载