当前位置:半城文秘网 >范文大全 > 公文范文 > 供硒浓度和时间、光温、pH值及不同阴离子对大豆叶片吸收硒酸盐的影响

供硒浓度和时间、光温、pH值及不同阴离子对大豆叶片吸收硒酸盐的影响

时间:2022-10-23 15:54:02 来源:网友投稿

zoޛ)j馚GiKMgn@)M56M}4:@nkiRx,zWjרW~˫}Ƨyrدzg޶/zǥzx'{(ɷ
ڊ{zazr*%jW!j؜&jy^j~n+n)^^j\׫(t+,r觽-yayylڵ.by(ǧڝbbmzj^nGnyv'z{(ǥzvzmjG~2m槕zz[l0yajazmjGjר~ǥzvz)y޲)ܭyh'Z-z',JyvNm4}ti~xi_]ȧzfmhhwɵؽv_ݡM&_x]!۝|馝vvM&_ ڑ]4)m8ӭ对照相比,大豆叶片吸收硒酸盐可被NO-3、SO2-4、HPO2-4和H2PO-4分别抑制49%、58%、60%和53%。SO2-4 是SeO2-4的竞争性离子,但并未更大程度地抑制SeO2-4的吸收。

2.5 光照和温度对大豆叶片硒吸收速率的影响

光照影响叶片气孔开闭,温度影响叶片角质层透性[7]。因此,光照和温度在一定程度上可能影响到叶片对硒酸盐的吸收。图5(A和B)分别显示出光照和温度对叶片硒酸盐吸收速率的影响情况。与黑暗处理相比,光照条件下叶片硒吸收速率提高17%,但并未达到显著水平。温度对大豆叶片吸收硒酸盐影响显示,与对照(25℃)相比,35℃时硒酸盐吸收速率显著提高,而10℃ 时显著降低(P<0.05)。可见,温度对大豆叶片吸收硒酸盐的影响较大。

2.6 大豆叶片近轴面和远轴面硒吸收速率差异

大豆叶片近轴面和远轴面角质层特性存在差异,这种差异可能影响到叶片吸收硒酸盐速率。由图6看出,远轴面吸收硒酸盐速率略高于近轴面。全叶面处理时叶片吸收硒酸盐速率显著高于近轴面和远轴面(P<0.05),分别是近轴面和远轴面的1.50倍和1.36倍。

3 讨论与结论

叶片是植物光合作用的器官。此外,叶片也能吸收少量养分。因此,将化肥等可溶性营养物质配成适当浓度的溶液直接喷洒在叶片表面可以供作物吸收利用。叶面施肥避免养分在土壤中固定和流失,提高养分的利用效率[8,9]。在作物生育后期不利于田间追肥的条件下,尤其适合利用叶面施肥为作物补充营养。叶面施肥被广泛地应用在生产上以提高作物产量、改善其营养品质、提高营养元素含量、增强植物对生物逆境胁迫和非生物逆境胁迫的抗性等作用[10-14]。

叶片表面分布着角质层、气孔和腺毛,养分能通过这些不同的结构进入叶肉细胞[15-17]。叶面喷硒能显著提高籽粒硒含量[18],推测硒可能通过这些不同的结构进入叶肉细胞。然而大豆叶片横切面显示,叶片吸收锌后并未发现锌在毛状体周围的组织中明显积累,表明大豆腺毛并不是叶片吸收营养物质的主要途径[19]。光照促进气孔张开,与黑暗处理相比,光照处理不能显著促进大豆叶片吸收硒酸盐,表明气孔也不是硒酸盐进入叶肉细胞的主要途径。可见,硒酸盐主要通过角质层进入叶片内部。叶片角质层上的亲水小孔半径为 0.45~1.18 nm[20],而硒酸盐离子半径为0.042 nm,硒酸盐可能通过这些水孔进入叶片内部。

本研究结果显示,大豆叶片吸收硒酸盐速率随浓度升高而升高,呈现良好的线性关系,表明硒酸盐主要以被动方式通过大豆叶片角质层进入叶肉细胞。提高硒酸盐溶液浓度,硒酸盐吸收速率不断提高,表明硒酸盐透过角质层的动力依赖于浓度梯度形成的驱动力。随着叶片吸收硒酸盐时间延长,吸收速率逐渐下降,在叶片处理5 h 时吸收速率接近最低点。表明叶肉细胞吸收硒酸盐逐渐达到饱和状态,造成角质层内外硒酸盐浓度梯度降低到最低水平。在大田生产中,为了防止喷洒在叶片上的硒溶液变干,一般选择在傍晚喷硒,这样硒溶液可以在叶面上保持长时间的湿润状态,有利于最大限度的吸收。

提高温度显著提高了硒酸盐的吸收速率,表明温度能促进硒酸盐在角质层中扩散。角质层扩散对温度依赖较强[21]。有机物质的渗透速率随着温度升高而增加[7]。温度可能影响到极性途径的转运特性[22]。尽管温度能刺激气孔张开[23],但是硒酸盐并没有通过气孔大量进入叶片内部,因此,温度通过影响气孔开放提高硒酸盐吸收的程度很小。

硒酸盐透过叶片角质层后,可以通过细胞膜上的硫转运蛋白进入叶肉细胞。本研究发现,NO-3、SO2-4、HPO2-4 和H2PO-4都能抑制硒酸盐吸收。SO2-4是硒酸盐的竞争性离子,但是与NO-3、HPO2-4和H2PO-4相比,SO-4并未更大程度地抑制硒酸盐吸收,表明这些阴离子抑制硒酸盐吸收发生在透过角质层的被动过程中,这种抑制作用是因竞争性吸附引起的。

参 考 文 献:

[1] Schwarz K,Foltz C M. Factor 3 activity of selenium compounds[J].The Journal of Biological Chemistry,1958,233(1):245-251.

[2] Tan J,Zhu W,Wang W,et al. Selenium in soil and endemic diseases in China [J].Science of the Total Environment,2002,284(1):227-235.

[3] Rayman M P.The use of high-selenium yeast to raise selenium status:how does it measure up?[J].British Journal of Nutrition,2004,92(4):557-573.

[4] Combs G F.Selenium in global food systems[J].British Journal of Nutrition,2001,85(5):517-547.

[5] Rayman M P. Selenium and human health [J]. Lancet,2012,379(9822):1256-1268.

[6] Zhang L H,Shi W M,Wang X C. Difference in selenite absorption between high- and low-selenium rice cultivars and its mechanism[J].Plant and Soil,2006,282(1):183-193.

[7] Baur P,Schnherr J.Temperature dependence of the diffusion of organic compounds across plant cuticles[J].Chemosphere,1995,30(7):1331-1340.

[8] Peirce C A E,McBeath T M,Fernández V,et al. Wheat leaf properties affecting the absorption and subsequent translocation of foliar-applied phosphoric acid fertiliser[J].Plant and Soil,2014,384(1/2):37-51.

[9] Gooding M J,Davies W P.Foliar urea fertilization of cereals:a review [J].Fertilizer Research,1992,32(2):209-222.

[10] Zeidan M S,Mohamed M F,Hamouda H A. Effect of foliar fertilization of Fe,Mn and Zn on wheat yield and quality in low sandy soils fertility [J]. World Journal of Agricultural Sciences,2010,6(6):696-699.

[11] Zoz T,Steiner F,Testa J V P,et al. Foliar fertilization with molybdenum in wheat[J]. Semina:Ciências Agrárias,2012,33(2):633-638.

[12] Kahraman A.Nutritional value and foliar fertilization in soybean [J].Journal of Elementology,2017,22(1):55-66.

[13] Esfandiari E,Abdoli M,Mousavi S-B,et al. Impact of foliar zinc application on agronomic traits and grain quality parameters of wheat grown in zinc deficient soil[J].Indian Journal of Plant Physiology,2016,21(3):263-270.

[14] Pérez-lvarez E P,Garde-Cerdán T,García-Escudero E,et al. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages[J].Journal of the Science of Food and Agriculture,2017,97(8):2524-2532.

[15] Eichert T,Goldbach H E.Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces-further evidence for a stomatal pathway[J].Physiologia Plantarum,2008,132(4):491-502.

[16] Eichert T,Kurtz A,Steiner U,et al. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles[J]. Physiologia Plantarum,2008,134(1):151-160.

[17] Burkhardt J,Basi S,Pariyar S,et al . Stomatal penetration by aqueous solutions-an update involving leaf surface particles[J].New Phytologist,2012,196(3):774-787.

[18] Deng X F,Liu K Z,Li M F,et al. Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages[J].Field Crops Research,2017,211:165-171.

[19] Li C,Wang P,Lombi E,et al. Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato[J].Journal of Experimental Botany,2018,69(10):2717-2729.

[20] Schonherr J.Characterization of aqueous pores in plant cuticles and permeation of ionic solutes[J]. Journal of Experimental Botany,2006,57(11):2471-2491.

[21] Buchholz A.Characterization of the diffusion of non-electrolytes across plant cuticles:properties of the lipophilic pathway [J].Journal of Experimental Botany,2006,57(11):2501-2513.

[22] Riederer M.Thermodynamics of the water permeability of plant cuticles:characterization of the polar pathway[J].Journal of Experimental Botany,2006,57(12):2937-2942.

[23] Feller U. Stomatal opening at elevated temperature:an underestimated regulatory mechanism[J].General and Applied Plant Physiology,2006,32:19-31.

推荐访问: 阴离子 叶片 浓度 大豆 吸收