摘要:为了实现对红热钢管直径在线检测的目的,采用了数字式激光扫描的方法。该方法基于模数变换的原理,用电机带动四面体棱镜旋转,实现激光双光束同时对钢管直径和光栅的扫描,用光栅的栅距度量钢管直径。其创新之处是采用激光双光束同时扫描方式,克服了电机转速不稳带来的误差。用标准件做了原理实验测试,获得令人满意的结果,最大测量误差为±20 μm。使用此方法进行钢管直径在线检测具有实用性。
关键词:激光扫描; 直径; 信息变换; 在线检测
中图分类号:TN24934文献标识码:A文章编号:1004373X(2011)23020803
Online Detection of Pipe Diameter Based on Laser Scanning
ZHANG Yongfeng1, GUO Danwei2
(1.Shenzhen Polytechnic Industrial Training Centre, Shenzhen 518055, China;
2. College of Optical and Electronical Information, Changchun University of Science and Technology, Changchun 130000, China)
Abstract: In order to achieve online detection of redhot pipe diameter, a digital laser scanning method was used. The method was based on analogdigital conversion, used a motor driven tetrahedron prism rotating to achieve doublebeam laser on the pipe diameter and grating while scanning at the same time, adopted grating pitch as a ruler to measure the diameter of the pipe. Using of this doublebeam laser scanning, the error caused by the motor speed instability was overcame. The satisfactory results can be obtained by experimental test, the maximum measurement error is . A conclusion that online detection of pipe is practical.
Keywords: laser scanning; diameter; information transformation; online detection
收稿日期:201107200引言
根据钢管生产线要求,应在加工过程中实时监控钢管的直径,使生产的钢管直径达到所需的尺寸指标要求。实现红热钢管直径的在线检测,应具备非接触式检测、检测速度快、精确度高及便于数据处理与传输等特点。而采用模数式激光扫描钢管直径检测是较为理想的方案。采用激光直径检测仪可实时检测钢管直径,并将检测数据输入计算机,由计算机将实时检测的数据与预先给定的钢管直径参数进行比较,然后将直径偏差值送至伺服控制器,再由伺服控制器控制钢管生产机,使生产加工的钢管直径达到给定值。在钢管加工过程中,钢管直径的检测技术十分关键,将直接影响钢管直径的准确度。
1激光扫描直径信息变换原理
钢管生产线上的测控系统如图1所示,该系统包括激光直径检测仪、计算机和伺服控制器三个部分。
激光扫描直径信息变换属于模数光电信息变换,是将钢管直径经光电信息变换成为数字量。激光可产生一束很细的平行光,采用激光作为扫描光源是非常理想的。图2为激光扫描钢管直径信息变换原理图。激光束经透镜1后被反射镜反射,由于旋转反射镜的转动可产生扫描光束,扫描光束经透镜1后变为平行的扫描光束,并以速度v对工件扫描,经透镜2后被探测器接收。由于工件的遮挡原理,将工件直径D变为光脉冲φs信号。由于激光束有一定的直径,在扫描工件边缘时会产生过渡区,使光脉冲信号前后沿变斜。光脉冲经探测器接收并放大后变为电压信号Us,再由边缘检测电路(鉴幅器)确定工件边缘的转换点,输出理想的脉冲信号,脉冲宽度t与工件直径成正比,则将对钢管直径D的测量转换为对脉冲宽度t的测量。
图1钢管在线测控系统
图2激光扫描直径信息变换原理图对脉宽t的测量有两种方法,一种是时间测量法,即利用激光扫过钢管直径D所需的时间进行测量,这种方法要求激光扫描的速度v恒定。另一种是位移测量法,即利用激光扫过钢管直径D所产生的位移量进行测量。下面介绍采用位移测量法实现数字式激光直径检测仪的工作原理。
2数字式激光直径检测仪
从激光器1发射的光束被分光镜2分成两束,一束通过透镜3和透镜4,然后再通过玻璃四面体5。玻璃四面体绕中心轴O(垂直图面)旋转,使光束的扫描方向与光轴相垂直。由几何光学可知,一束光按一定角度入射平行玻璃体时,由于折射结果使通过平行玻璃体的光束与原入射光束平移一段距离,而平行位移的大小与入射角度有关。那么,如果玻璃四面体按顺时针方向旋转时,使光束入射玻璃体的角度连续改变,因而使通过四面体的光束也连续平移,即光束连续扫描,如图3所示。玻璃四面体在5位置时,通过玻璃四面体的光束在10位置,当玻璃四面体旋到5′位置时,通过玻璃四面体的光束平行位移到10′位置。可见,当玻璃四面体顺时针旋转时,光束10由上向下扫描。扫描光束通过窗口6,然后横扫待测直径的钢管7。通过工件周围的光束由透镜8聚焦于光电接收器9,当光束扫描到工件边缘(光束与工件相切点)时,因为光束在切点处开始被工件遮挡,所以光电接收器接收光能从有到无突然变化,使其输出电信号也突然变化。输出的信号经过电子线路处理后,能分辨出激光光束与工件上下边缘相切点位置的偏差为±1 μm。
由分光镜2投射出的第二束光通过透镜11和12聚焦,并由棱镜13和14转向,使其与第一束光垂直,然后通过旋转玻璃四面体。第二束光通过玻璃四面体以前经由光栅15,其刻线与图平面垂直,玻璃四面体旋转时,使第二束光类似第一束光进行扫描,其扫描方向由左向右。第二束光扫描过第二光栅16,其第二光栅的刻线与第一光栅平行,透过光栅16的光束由透镜17聚焦在光电接收器18上。光电接收器18输出的信号随着第二束光扫过光栅16而作正弦变化,其每一振荡周期相当于光束移过光栅刻线的一个节距。
从图3中所示的图线可以看出,这两束扫描光束相对它们入射光的位移是相等的。玻璃四面体旋转90°角时,每一扫描光束就进行一次完整的扫描。
图3结构原理图两个光电接收器输出的信号经放大整形后其波形如图4所示。光束10扫过工件时,光束接收器9输出信号经放大整形为方波脉冲如图4(a)所示,此脉冲宽度正比于被测工件的直径。光束19扫过光栅16时,光电接收器18输出的正弦信号叫节距信号,经放大整形后为计量脉冲,如图4(b)所示。用方波脉冲控制电子门20,在此脉宽时间内打开电子门20,用电子计数器21计入计量脉冲,如图4(c)所示。设量化节距为q,所计脉冲数为n,则被测工件的直径:D=qn(1)玻璃四面体的旋转速度一般是3 000 r/min,在此旋转速度下,每秒内可以测量200次。因此,可用于连续测量轴向移动工件的直径。由于两个扫描光束是同步扫描,当玻璃四面体旋转一定角度时,两光束扫过的位移是相等的,因此,这种测量方法与时间间隔无关,那么玻璃四面体旋转速度的变化对直径测量的精确度将没有影响,即放宽了对玻璃四面体旋转速度的要求。
图4波形图3误差分析
影响测量精确度的因素有以下几方面:
(1) 量化误差:设光栅的节距为q,q值既是量化单位,也是测量的最小分辨率,其测量误差为±1/2q,这是测量的原理误差。目前,光栅节距(栅距)有20 μm,10 μm,5 μm等。光栅尺寸的刻度误差将直接影响量化误差,所以对光栅刻度误差有一定要求。另外,为了提高测量精确度,将透过光栅16的整个光通量变化用透镜17聚焦在光电接收器18的光敏面上,这样具有积分效果,可以克服个别光栅刻线的较大误差,从而放宽了对光栅刻线的要求。
(2) 玻璃四面体的几何形状误差:理想的玻璃四面体是一个正方形四面体,能保证两个扫描光束的位移量相等。实际加工过程中存在几何形状误差,这个误差直接影响扫描光束的位移量,给测量直径尺寸带来误差。
当工件移动速度较慢时,将玻璃四面体旋转一周或数周时所连续测量的直径取平均值,可大大减小由于玻璃四面体几何形状的偏差所引起的误差。在这种情况下,测量精确度约为2 μm。
(3) 工件移动过程中检测带来的位移误差:上面已经提到,在高速扫描的情况下,工件移动速度较慢时,可以忽略此项误差。但当工件移动速度较快时,位移误差不能忽略。
图5为钢管移动时,对应不同位置直径的变化曲线,横坐标为位置量,纵坐标为直径量,设钢管的标准直径为D0,A点为开始检测位置。由于工件以v1速度移动,扫描光束离开工件时为B点位置,则给测量A点位置的直径带来误差,为分析方便,设A点位置的直径为D0,B点位置的直径为D0+ΔD,若钢管沿轴心对称增大,则测量直径误差为1/2ΔD。
图5位移误差分析设D=f(x)即直径是位置的函数,工件移动速度为v1,扫描速度为v2,工件由A点移到B点时的位移为Δx,在Δx很小的情况下,直径曲线的变化可视为线性变化,其变化斜率为f′(xA)。
扫描光束扫过钢管直径的时间t为:t=D0/v2(2)在此时间内钢条的移动位置Δx为:Δx=v1t(3)钢管直径的增长量ΔD为:ΔD=f′(xA)•Δx(4)将式(2)和式(3)代入式(4)得:ΔD=D0f′(xA)v1/v2(5)从公式(5)可以看出,位移误差的大小正比于工件移动速度v1与光束扫描速度v2之比。当工件移动速度较慢,即v1/v21时,可以忽略位移误差,即工件速度的上限值受扫描速度和测量精确度的限制。
(4) 随机误差:在检测过程中,因工件受到震动使位置变化、光源波动使光束与工件相切点位置变化、电源波动都将引入误差。所以进行多次直径测量,取其平均值,可以使随机误差减少,甚至忽略。为此,可采用8面、16面玻璃体扫描,以提高扫描次数。
总之,影响检测精确度的主要有量化误差和位移误差。在静态测量或工件移动速度不大时,主要为量化误差,而其他随机误差可以通过多次测量取平均值来克服。
4结论
当钢管运行速度为150 m/min时,连续测量分辨率为10 μm,测量精确度为±20 μm。该项科研成果已通过省部级科技鉴定,已形成系列产品,除用于钢管厂测量红热钢管的直径外还可用于测光纤、电线等线材直径。
参考文献
[1]张彤.光电接收器件及其应用\[M\].北京:高等教育出版社,1987.
[2]张彤.光电成象器件及其应用\[M\].北京:高等教育出版社,1987.
[3]韩丽英,崔海霞.光电变换与检测技术\[M\].北京:国防工业出版社,2010.
[4]秦积荣.光电检测原理及应用(上册)\[M\].北京:国防工业出版社,1985.
[5]安毓英.光电子技术\[M\].北京:电子工业出版社,2003.
[6]范志刚.光电测试技术\[M\].北京:电子工业出版社,2004.
[7]王庆有.光电技术\[M\].北京:电子工业出版社,2008.
[8]徐科军.传感器与检测技术\[M\].北京:电子工业出版社,2005.
[9]孙传友,孙晓斌.感测技术基础\[M\].北京:电子工业出版社,2004.
[10]杨宝清,宋文贵.实用电路手册\[M\].北京:机械工业出版社,2003.
作者简介: 张永枫男,1960年出生,吉林长春人,副教授。国家精品课程单片机应用技术负责人,多年从事自动控制及检测技术的教学与科研工作。